VIBRATIONAL SPECTRA OF AND BONDING IN (CYCLOBUTADIENE)IRON TRICARBONYL

D. C. ANDREWS AND G. DAVIDSON

Department of Chemistry, University of Nottingham, Nottingham NG7 2RD (Great Britain) (Received September 24th, 1971)

SUMMARY

The vibrational spectrum of (cyclobutadiene)iron tricarbonyl is reported and assigned. This is the first reported detailed description of the vibrations of an unsubstituted, π -complexed cyclobutadiene ring.

INTRODUCTION

The free cyclobutadiene molecule exists only as a transient species, and calculations suggest¹ that it is a rectangular molecule, with alternate single and double bonds. X-ray studies on (tetraphenylcyclobutadiene)iron tricarbonyl², and electron-diffraction investigations of $(C_4H_4)Fe(CO)_3^{3,4}$ show, however, that the C_4 -ring π -bonded to a transition metal is square, with, therefore, extensive electron delocalisation around the ring. Furthermore, the cyclobutadiene system in such complexes possesses many aromatic properties⁵.

We report here the first detailed investigation of the vibrational spectrum of a complex containing an unsubstituted C_4H_4 ring π -bonded to a metal. The only previous assignments for a four-membered ring in a π -complex were made, using IR data only, by Fritz⁶, for the molecule $[C_4(CH_3)_4NiCl_2]_2$.

EXPERIMENTAL

 $(C_4H_4)Fe(CO)_3$ was prepared by the method of Pettit and Henery⁷ [from dichlorocyclobutene⁸ and Fe₂(CO)₉]. Purification was achieved by sublimation *in vacuo*.

IR spectra were run on a Perkin–Elmer 521 (from 4000–300 cm⁻¹), as liquid films or solutions in CCl₄. The instrument was calibrated using known peaks of CH₄, HBr, CO, H₂O and NH₃; the frequencies are all expected to be accurate to $\pm 2 \text{ cm}^{-1}$.

Raman spectra were obtained using a Cary Model 81 spectrometer, with a Spectra-Physics 125 He–Ne laser as excitation source (output approximately 60 mW at 632.8 nm). Spectra were observed for solid samples, for the pure liquid and for CCl_4 solutions. Samples did not seem to suffer any decomposition over a period of several hours, and the spectra given were reproducible. Liquid samples were held in a capillary tube (i.d. approximately 1 mm). Depolarisation ratios were obtained by rotating the

plane of the incident light and passing the scattered light through a polaroid analyser (the capillary cell was calibrated against a one-pass liquid cell which gave accurate ρ values).

RESULTS AND DISCUSSION

The IR and Raman frequencies observed for $(C_4H_4)Fe(CO)_3$ are listed in Table 1, together with the assignments of these frequencies, which will be discussed below.

TABLE I

VIBRATIONAL SPECTRA AND ASSIGNMENT FOR $(C_4H_4)Fe(CO)_3$ All figures in cm⁻¹.

IR			Raman		Assignment
Liq. film	CCl₄ soln.	Solid	Liq. film	CCl₄ soln.	
3130 w			3134 w, dp. 2908 w, pol.		C-H str. $(A_1 + B_1 + E)$
2640 w			_		
2560 w					
2518 w					
2470 w					
2358 m					
2265 w					
2045 vs	2052 s	$\begin{cases} 2041 \text{ m} \\ 2033 \text{ m} \end{cases}$	2051 m, pol.	2051 m, pol.	C-O str. (A_1)
1965 vs	1971 s	1979 m 1973 s 1936 m	1979 s, dp.	1976 s, dp.	C-O str. (<i>E</i>)
		(1329 w)			
1325 s		11319 w l	1330 m, ap.		$C - C \text{str.} (E + ?B_2)$
1232 s		1235 m	1235 s. pol.	1231 m. pol.	$C-C$ str. (A_1)
1172 w (br)					
1015 w					
975 m					i.p. ^a C-H def. (E)
			964 m, dp.		i.p. C-H def. (B_2)
			957 (sh).	958 w. dp.	i.p. ring def. (B_1)
937 s			940 m. dp.	· •	0.0.p. ^b C-H def. (E)
822 s			825 m. pol.		0.0.p. C-H def. (A_1)
775 w			774 w		0.0.p. C-H def. (B_1)
610 vs	610 m		612 w. pol.		$Fe-C-O def. (A_1)$
			606 w. ?dp.		
585 vs	588 m				Fe-C-O def.(E)
511 s	510 w	513 m	514 m. dp.		$Fe^{-(CO)}$ str. (E)+
			× 1		Fe-C-O def.(E)
			506 m. dp.		0.0.p. ring def. (B_1)
470 s	470 w	469 ш	472 m. dp.		Ring tilt (E)
			431 s. pol.		Fe-(CO) str. (A ₁)
396 m		403 s	399 s. pol.	394 s. pol.	(Ring)—Fe str. (A_1)
-			135 w, ?pol.	131 w, ?pol.	C-Fe-C def. (A)
			104 s, dp.	112 s, dp.	C-Fe-C def. (E)
			94 s, dp.	· •	(Ring)-Fe (CO) ₃ def. (E)

ς...

^a In-plane. ^b Out-of-plane.

Vibrational analysis

The electron-diffraction results of Davis and Speed⁴ indicate that there is only a very low barrier to the rotation of the C_4H_4 ring with respect to the Fe(CO)₃ moiety. Consequently it seems reasonable to attempt an assignment of the observed spectra in terms of the "local symmetry" of the (C_4H_4) -Fe $(C_{4\nu})$ and Fe(CO)₃ $(C_{3\nu})$ fragments.

For the (C_4H_4) -Fe unit, we expect the following numbers and types of vibration (C_{4n}) :

(a) C-H stretching: $A_1 + B_1 + E$

(b) C–C (ring) stretching: $A_1 + B_2 + E$

(c) In-plane ring deformation: B_1

(d) Out-of-plane ring deformation: B_1

(e) In-plane C-H deformation: $A_2 + B_2 + E$

(f) Out-of-plane C-H deformation: $A_1 + B_1 + E$

(g) Ring-Fe stretching: A_1

(h) Ring tilt : E

(i) Ring torsion: A_2

(N.B. In systems of C_{4v} symmetry, only A_1 and E modes are IR-active, while A_2 modes are totally inactive. Thus A_1 , B_1 , B_2 and E are Raman-active, with A_1 giving polarised bands.)

For the $Fe(CO)_3$ unit (C_{3v}) we expect:

(a) C-O stretching: $A_1 + E$

(b) Fe–(CO) stretching: $A_1 + E$

(c) Fe-C-O deformation: $A_1 + A_2 + 2E$

(d) C-Fe-C deformation: $A_1 + E$

and, in addition:

(e) (Ring)-Fe-(CO)₃ deformation: E

(All of these vibrations will be IR- and Raman-active, except those of A_2 symmetry.)

Assignment of frequencies to the (C_4H_4) -Fe unit

Only one band was observed in the region associated with v(C-H) vibrations of an aromatic C_nH_n ring, at 3130 cm⁻¹ (IR) and 3134 cm⁻¹ (R, dp.). This must, therefore, be assigned to the A_1 , B_1 and E C-H stretching vibrations. It compares very closely with, *e.g.* the two v(C-H) bands found for $(C_5H_5)V(CO)_4^9$, at 3128 cm⁻¹ and 3110 cm⁻¹.

In π -bonded cyclopentadienyl and arene ligands the totally symmetric "ringbreathing" C-C stretch is found at ~1100 cm⁻¹ (for C₅H₅⁻, e.g. ref. 10) and at ~1000 cm⁻¹ (for C₆H₆, e.g. refs. 11, 12). The difference may perhaps be ascribed to the greater number of π -electrons involved per C-C bond in the 5-membered ring system, and so we might expect to find the C₄H₄ ring (with 4 π -electrons) giving a ring-breathing vibration ~1000 cm⁻¹. Such vibrations generally give rise to intense, strongly polarised Raman bands, however, and no such bands were observed in the 1000 cm⁻¹ region. There was a band of this type at 1233 cm⁻¹, and we assign this to the A₁ C-C stretch. It remains to consider the reason for the high value for this frequency; a likely explanation appears to be connected with the strain present in such a small ring, which makes a simultaneous increase or decrease of all 4 C-C bonds a matter of some difficulty.

Two Raman bands, one having a coincident IR band, due to the antisymmetric

[·] J. Organometal. Chem., 36 (1972)

ring stretches should be observed, but only one is seen in each spectrum, at 1327 cm^{-1} (depolarised in the Raman spectrum). This can be assigned certainly to the *E* mode, leaving the B_2 mode (Raman-active only) unobserved, unless it is coincident with the former.

C-H deformation vibrations in the plane of the C_4 ring $(B_2 + E)$ would be expected to occur at higher frequencies than those perpendicular to it $(A_1 + B_1 + E)$. There should be only one polarised Raman line and in the region 700–1000 cm⁻¹ only one is found, at 825 cm⁻¹, with a strong IR band at 822 cm⁻¹. This is therefore assigned to the A_1 out-of-plane C-H deformation. Two definite IR bands, at 975 cm⁻¹ (no Raman counterpart) and at 937 cm⁻¹ (depolarised Raman band at 940 cm⁻¹) must be E modes. On the basis that in-plane C-H deformations usually occur at higher frequencies, the former is assigned thus, leaving the 938 cm⁻¹ band as the out-of-plane mode. The two remaining C-H deformations are Raman active only, and three bands are possible candidates for these (with the third as an in-plane ring deformation, see below). The assignments for these bands are a little arbitrary, but the following appears to be the most reasonable: 964 cm⁻¹ (B_2 , in-plane C-H deformation); 774 cm⁻¹ (B_1 , out-of-plane C-H deformation, there is a weak IR counterpart to this band, due either to a slight breakdown in C_{4v} selection rules or, more likely, to an overtone, 2×396 - see below).

The final Raman band in this region (which has no IR counterpart) is at 957 cm⁻¹, and it is assigned as the B_1 in-plane ring deformation. The out-of-plane ring deformation (B_1) is usually found at a much lower frequency¹⁰, and in this case it is assigned to a depolarised Raman band at 506 cm⁻¹.

We must now consider the vibrations associated with the (C_4H_4) -Fe unit as a whole. There are three such modes, and one (the A_2 ring torsion) is totally inactive. Of the remaining two, the symmetric (Ring)-Fe stretch (A_1) can be assigned quite confidently to the strong, polarised Raman line at 399 cm⁻¹ (medium intensity IR analogue). This is in agreement with observed (Ring)-M stretches for $(C_5H_5)-M^{10,13}$ and $(C_6H_6)-M^{11,14,15}$ systems. The frequency is appreciably greater than in (hydrocarbon) iron tricarbonyl complexes which contain less symmetrical organic fragments *e.g.* (butadiene)iron tricarbonyl, $(351 \text{ cm}^{-1})^{16}$ and (cyclo-octatetraene)iron tricarbonyl $(330 \text{ cm}^{-1})^{17}$, indicating that perhaps the cyclobutadiene ring can form quite a strong bond to the Fe atom. The ring tilting vibration generally occurs at a higher frequency than the (Ring)-M stretch, and the most reasonable assignment is to a depolarised Raman line of medium intensity at 472 cm⁻¹ (strong IR band at 470 cm⁻¹).

Assignment of frequencies to the $Fe(CO)_3$ unit

In this section published data on other (hydrocarbon)iron tricarbonyl complexes^{16,17} will be of some assistance in the assignment. As we are assuming that the local symmetry of C_{3v} will be sufficient, there should be just two C-O stretching modes $(A_1 + E)$. The symmetric stretch must correspond to the strong polarised Raman E_1 1975 (IR; R, depol.). These are very similar to the frequencies found for the butadiene¹⁶ and cyclo-octatetraene¹⁷ complexes.

Two Fe-(CO) stretches should also be found in the 350-500 cm⁻¹ region (A_1+E) . The symmetric stretch must correspond to the strong polarised Raman line at 431 cm⁻¹ (no observed IR analogue), while the degenerate stretch is assigned to a depolarised Raman band at 514 cm⁻¹ and a strong IR band at 511 cm⁻¹. These are

significantly higher in frequency than the analogous vibrations in (butadiene)iron tricarbonyl: 379 cm^{-1} and 460 cm^{-1} .

It is generally difficult to obtain a complete and unambiguous assignment of individual M-C-O deformations (~500-700 cm⁻¹). For C_{3v} Fe(CO)₃ there should be 4 such vibrations, but one (A_2) is inactive. This leaves $A_1 + 2E$: the symmetric deformation must give rise to the very strong IR band at 610 cm⁻¹, for the Raman equivalent (612 cm⁻¹), although weak, is definitely polarised. One Fe-C-O deformation of *E* symmetry is found at 585 cm⁻¹ (IR, very strong; no Raman), and the other is apparently coincident with the Fe-(CO) stretch of *E* symmetry (511 cm⁻¹ in the IR). There remains in this region a weak, probably depolarised Raman band at 606 cm⁻¹. This could conceivably be the A_2 deformation (formally forbidden), or alternatively it may be a combination band (*e.g.* 514+94=608).

The only fundamental vibrations yet to be considered are the two C-Fe-C deformations $(A_1 + E)$ and one deformation of the whole (C_4H_4) -Fe- $(CO)_3$ molecule (E). These are to be expected below ~ 150 cm⁻¹. No IR data were available in this region, but three Raman bands were observed. That at highest frequency (135 cm⁻¹) is weak, but almost certainly polarised. This is assigned to the A_1 C-Fe-C deformation. The other two bands (104, 94 cm⁻¹) are much stronger, and definitely depolarised. These are clearly the required two E modes; that at higher frequency will, by analogy with previous assignments, correspond to the C-Fe-C deformation, leaving the 94 cm⁻¹ band as the (C_4H_4) -Fe- $(CO)_3$ deformation.

CONCLUSION

The first detailed observations on the vibrational spectrum of a π -bonded, unsubstituted cyclobutadiene system have been made, and an almost complete assignment of the vibrations of the (C₄H₄)-Fe unit of (C₄H₄)Fe(CO)₃ carried out (see

TABLE 2

ASSIGNMENT OF FREQUENCIES FOR (C_4H_4) Fe IN (C_4H_4) Fe $(CO)_3$ C_{4v} symmetry; all figures in cm⁻¹.

C-H stretching:	$\left. \begin{array}{c} A_1 \\ B_1 \\ F \end{array} \right\}$	3132
Ring stretching:	A_1	1234
• •	В,	?1327
	Ē	1327
In-plane ring deformation:	B_1	957
Out-of-plane ring deformation :	B_1	506
In-plane C-H deformation:	A_2	not observed
	B ₂	964
	Ē	975
Out-of-plane C-H deformation:	A_1	824
-	B_1	774
	Ē	939
(Ring)-Fe stretching:	A_1	398
Ring tilt:	Ē	471
Ring torsion:	A_2	not observed

TABLE 3

C_{3v} symmetry; all figures in cm ⁻¹ .					
C-O stretching:	A_1	2051			
•	Ē	1979			
Fe-(CO) stretching:	A_1	431			
	Ε	513			
Fe-C-O deformation:	A_1	611			
	A_2	Not observed			
·	E	585			
	E	513			
C-Fe-C deformation:	A_1	135			
	E	104			
(Ring)–Fe–(CO) ₃ deformation:	E	94			

ASSIGNMENT OF FREQUENCIES FOR $Fe(CO)_3$ AND $(C_4H_4)Fe(CO)_3$ IN $(C_4H_4)Fe(CO)_3$ C_{3v} symmetry; all figures in cm⁻¹.

Table 2). The (C_4H_4) -Fe stretching frequencies indicate that there is a strong bonding interaction between the ring and the metal. The vibrational frequencies of the Fe(CO)₃ fragment are similar to those of other (hydrocarbon)Fe(CO)₃ systems (Table 3).

ACKNOWLEDGEMENTS

1

We are very grateful to the Science Research Council for the award of a research studentship (to D.C.A.).

REFERENCES

- 1 M. J. S. DEWAR AND G. J. GLEICHER, J. Amer. Chem. Soc., 87 (1965) 3255.
- 2 R. P. DODGE AND V. SCHOMAKER, Acta Crystallogr., 18 (1965) 614.
- 3 M. OBERHAMMER AND H. A. BRUNE, Z. Naturforsch. A, 24 (1969) 607.
- 4 M. I. DAVIS AND C. S. SPEED, J. Organometal. Chem., 21 (1970) 401.
- 5 J. D. FITZPATRICK, L. WATTS, G. F. EMERSON AND R. PETTIT, J. Amer. Chem. Soc., 87 (1965) 3254.
- 6 H. P. FRITZ, Advan. Organometal. Chem., 1 (1964) 239.
- 7 R. PETTIT AND J. HENERY, Org. Syn., 50 (1970) 21.
- 8 R. PETTIT AND J. HENERY, Org. Syn., 50 (1970) 36.
- 9 J. R. DURIG, R. B. KING, L. W. HOUK AND A. L. MARSTON, J. Organometal. Chem., 16 (1969) 425.
- 10 D. HARTLEY AND M. J. WARE, J. Chem. Soc. A, (1969) 138.
- 11 G. DAVIDSON AND E. M. RILEY, J. Organometal. Chem., 19 (1969) 101.
- 12 L. SCHÄFER, J. F. SOUTHERN AND S. J. CYVIN, Spectrochim. Acta, Part A, 27 (1971) 1083.
- 13 I. J. HYAMS, R. T. BAILEY AND E. R. LIPPINCOTT, Spectrochim. Acta, Part A, 23 (1967) 273.
- 14 D. M. ADAMS AND A. SQUIRE, J. Chem. Soc. A, (1970) 814.
- 15 G. DAVIDSON AND E. M. RILEY, Spectrochim. Acta, Part A, 27 (1971) 1649.
- 16 G. DAVIDSON, Inorg. Chim. Acta, 3 (1969) 596.
- 17 R. T. BAILEY, E. R. LIPPINCOTT AND D. STEELE, J. Amer. Chem. Soc., 87 (1965) 5346.